Numerical approximation of the LQR problem in a strongly damped wave equation

نویسندگان

  • Erwin Hernández
  • Dante Kalise
  • Enrique Otárola
چکیده

The aim of this work is to obtain optimal-order error estimates for the LQR (Linear-quadratic regulator) problem in a strongly damped 1-D wave equation. We consider a finite element discretization of the system dynamics and a control law constant in the spatial dimension, which is studied in both point and distributed case. To solve the LQR problem, we seek a feedback control which depends on the solution of an algebraic Riccati equation. Optimal error estimates are proved in the framework of the approximation theory for control of infinite-dimensional systems. Finally, numerical results are presented to illustrate that the optimal rates of convergence are achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach

In this paper‎, ‎we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset‎ ‎of 3-dimensional space‎. ‎The place of sensor is modeled by a subdomain‎ ‎of this region of a given measure‎. ‎By using an approach based on the embedding process‎, ‎first‎, ‎the system is formulated in variational form;...

متن کامل

Uniformly exponentially stable approximations for a class of second order evolution equations Application to LQR optimization problems

We consider the approximation of a class of exponentially stable infinite dimensional linear systems modelling the damped vibrations of one dimensional vibrating systems. It is by now well known that the approximating systems obtained by usual finite element or finite difference are not uniformly stable with respect to the discretization parameter. Our main result shows that, by adding a suitab...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

COMPARING NUMERICAL METHODS FOR THE SOLUTION OF THE DAMPED FORCED OSCILLATOR PROBLEM

In this paper, we present a comparative study between the Adomian decomposition method and two classical well-known Runge-Kutta and central difference methods for the solution of damped forced oscillator problem. We show that the Adomian decomposition method for this problem gives more accurate approximations relative to other numerical methods and is easier to apply. 

متن کامل

NUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE

This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2010